Petri Net Modeling, Scheduling and Real-Time Control of Cluster Tools in Semiconductor Manufacturing

MengChu Zhou New Jersey Institute of Technology and XiDian University

zhou@njit.edu

Cluster Tools for Semiconductor Manufacturing

 An integrated manufacturing system
 process module (PM)
 transport module (TM)
 cassette module (CM)

Mechanically interconnected

New Jersey's Science & Technology University

Why Use Cluster Tools?

Cluster Tools

Configuration

A robot
Single arm
Dual arm
Process modules (PM)
Loadlocks (LL)
No intermediate buffer

Wafer Flow Pattern

- Single wafer type
- n steps (operations)
- $(m_1, ..., m_i, ..., m_n)$: m_i parallel PMs for Step i

Scheduling Problem

- To schedule the production cycle with minimal cycle time
- The problems
 - Residency time constraint: after being completed, a wafer should be unloaded from a PM in a given time
 - Activity time variation
 - Schedulability
 - Scheduling algorithm
- Key: robot activity scheduling including robot waiting

Petri Net Modeling of Single Arm Cluster Tools (SACT)

- p_i: wafer processing at step i
- x_0 : unload wafer from LL and move to step
- x_i : move from step i to i+1
- x_n : return wafer from step n to LL
- y_i : move from step i+2 to i
- y_{n-1} : move from step 0 to n-1
- \mathbf{y}_n : move from step 1 to n
- Robot waiting at $p_i: q_i$
- Load and unload from and to p_i : s_{i1} and s_{i2}
- Scheduling: determining wait time in q_i

New Jersey's Science & Technology University

Time Modeling of SACT

Symbol	Transition or place	Actions	Allowed time duration
λ	s _{i1}	Robot loads a wafer into step i, $i \in \Omega$	
λ	s _{i2}	Robot unloads a wafer from step i, $i \in N_n$	
λ_0	s ₀₂	Robot unloads a wafer from a loadlock and aligns it	
μ	X _i	Robot moves from step i to step i+1, i N_{n-1}	
μ	x _n	Robot moves from step n to step 0	
μ	y _i	Robot moves from step i+2 to step i, $i \in N_{n-2}$	
μ	У _{п-1}	Robot moves from step 0 to step n-1	
μ	y _n	Robot moves from step 1 to step n	
τ_{i}	p _i	A wafer being processed and waiting in $p_i, i \in N_n$	$[\alpha_i^{},\alpha_i^{}+\delta_i^{}]$
ω _i	q _i	Robot waits before unloading a wafer from step i, $i \in \Omega$	$[0,\infty]$
	Z _{ij}	No robot activity is associated	0

Wafer Cycle Time of SACT

- ξ_i: the time for completing one wafer at step i (cycle time)
- The interval of $\xi_i = [\theta_i, \beta_i]$ determined by residency time constraint for step i
 - $> \theta_1 (\alpha_1 + 3\lambda + 3\mu + \lambda_0)/m_1$
 - $\succ \beta_1 = (\alpha_1 + 3\lambda + 3\mu + \lambda_0 + \delta_1)/m_1$
 - $\geq \theta_i = (\alpha_i + 4\lambda + 3\mu)/m_i, i = 2, \dots, n$
 - $> \beta_i = (\alpha_i + 4\lambda + 3\mu + \delta_i)/m_i, i = 2, ..., n$
 - $\succ \alpha_i$ = processing time for step i
 - $> \lambda =$ wafer load/unload time
 - $\geq \delta_i$ = the longest time delay after processed
 - > m_i = the parallel PMs for step i

Cycle time $\xi = \xi_i = \xi_j$

Discrete Event Systems Laboratory Department of Electrical and Computer Engineering

New Jersey's Science & Technology University

N

Robot Cycle Time of SACT

- Robot cycle time $\psi = \psi_1 + \psi_2$ where
 - $\succ \psi_1 = 2(n+1)\mu + (2n+1)\lambda + \lambda_0$
 - $\gg \mu$ time for moving from a step to another
 - $>\lambda$ = time for loading a wafer to a PM, or unloading from a PM
 - $> \lambda_0$ = time for unloading a wafer from a LL and aligning it
 - $\succ \omega_i$ = robot waiting time at step i

 $\psi = \xi$

 $\succ \Psi_2 = \sum_{i=0}^{n+1} \omega_i$

Schedulable Case 1 of SACT

- $\cap_i \xi_i \neq \emptyset$: the intersection of feasible time interval for all steps is not empty
- $\Psi_1 \leq \prod_{\text{Lmax:}}$ in a cycle, the robot has idle time

New Jersey's Science & Technology University

Schedulable Case 2 of SACT

- □ $\cap_i \xi_i \neq \emptyset$: the intersection of feasible time interval for all steps is not empty
- Transportation-bounded, but the robot cycle is in the intersection of feasible time interval for all steps

New Jersey's Science & Technology University

Schedulable Case 3 of SACT

- $\cap_i \pi_i = \emptyset$: the intersection of feasible time interval for all steps is empty
- $\psi_1 < \prod_{Lmax}$: robot has enough idle time for waiting before unloading wafers at some steps

New Jersey's Science & Technology University

Scheduling Algorithm of SACT

Case 1: simply set $\omega_n - \psi_2 - \Pi_{Lmax} - \psi_1$ Case 2: simply set $\omega_k = 0, k = 0, ..., n$ Case 3: $\psi_2 = \psi_{21} + \psi_{22}, \psi_{21} = \omega_0 + ... + \omega_{n-1}$, and $\psi_{22} = \omega_n$,

$$\omega_{i-1} = \begin{cases} 0, i \in F \\ m_i \times \prod_{L \max} -\alpha_i - \delta_i - 4\lambda - 3\mu, i \in E \cap \{2, 3, \dots, n\} \\ m_1 \times \prod_{L \max} -\alpha_1 - \delta_1 - 3\lambda - \lambda_0 - 3\mu, i \in E \cap \{1\} \end{cases}$$

The schedule is optimal in terms of cycle timeIt is a closed-form algorithm

New Jersey's Science & Technology University

Petri Net Modeling for Dual Arm Cluster Tools (DACT)

Robot wait: q_{i3}
 Swap: s_{i1} and s_{i2}
 Wait during swap: q_{i2} and q_{i3}
 Scheduling: determining wait time in q_{ij}

NULT New Jersey's Science & Technology University

Time Modeling of DACT

Symbol	Transition or place	Actions	Allowed time duration
μ ₀	x ₀	Robot unloads a wafer from a loadlock and moves to p_1	
$\mu_i = \mu$	x _i	Robot moves from p_i to p_{i+1} , $i \in N_{n-1}$	
μ_n	x _n	Robot moves to a loadlock and returns a wafer	
τ	P_{i}	A wafer being processed and waiting in p_i , $i \in N_n$	$[a_i, a_i + \delta_i]$
λ	s_{i1} and s_{i2}	Simple swap operation at p_i , $i \in N_n$	
ω _i	q_{i2} or q_{i3}	Robot waits during swap at p_i , $i \in N_n$	[0, γ]
ω _{i1}	q _{i1}	Robot waits at p_i , $i \in N_n$	$[0,\infty]$
ω _{i4}	q_{i4}	The end of swap operation at p_i , $i \in N_n$	0

Wafer Cycle Time of DACT

- π_i : the time for completing one wafer at step I (cycle time)
- The interval of $\pi_i = [\alpha_i, \beta_i]$ determined by residency time constraint for step i

$$\succ \alpha_i = (a_i + \lambda)/m_i$$

$$> \beta_i = (a_i + \lambda + \delta_i)/m_i$$

- > a_i = processing time for step i
- $> \lambda =$ swapping time
- $\geq \delta_i$ = the longest time delay after processed
- > m_i = the parallel PMs for step i

Cycle time $\pi = \pi_i = \pi_i$

Robot Cycle Time of DACT

Robot cycle time $\psi = \psi_1 + \psi_2$ where $\mathbf{\mathbf{\mathcal{V}}}_{1} = \mathbf{n} \times \mathbf{\lambda} + \sum_{k} \mathbf{\mu}_{k}$ $\mathbf{\nabla} \Psi_2 = \sum_k (\omega_{k1} + \omega_k))^T$ $\geq \mu_0$ – time for unloading a wafer from an LL $\geq \mu_i$ = move from step i to step i+1 $\gg \mu_n$ = return a wafer to an LL $> \lambda =$ time for swapping $\succ \omega_{k1}$ = time for waiting at place q_{k1} $\triangleright \omega_k$ = time waiting during swapping at step k $\Psi = \pi$

NULT New Jersey's Science & Technology University

Schedulable Case 1 of DACT

- Non-empty intersection of feasible time intervals for all steps
- Robot has idle time in a cycle

New Jersey's Science & Technology University

The feasible time interval and robot cycle are different from single arm cluster tools

Schedulable Case 2 of DACT

- Non-empty intersection of feasible time intervals for all steps
- Transportation-bounded, but the robot cycle is in the intersection of feasible time interval for all steps
- The feasible time interval and robot cycle are different from single arm cluster tools

Schedulable Case 3 of DACT

- Non-empty intersection of feasible time intervals for all steps
- Robot has enough idle time for waiting before unloading wafers at some steps
- The feasible time interval and robot cycle are different from single arm cluster tools

New Jersey's Science & Technology University

Scheduling Algorithm

Case 1: simply set $\psi_2 = \Pi_{Lmax} - \psi_1$ Case 2: simply set $\psi_2 = 0$

N

New Jersey's Science & Technology University

Case 3: $\psi_2 = \psi_{21} + \psi_{22}$, ψ_{21} is for waiting during swap operations, and ψ_{22} is for other waiting

$$\Psi 21 = \sum_{k=1}^{n} \omega_{k} \qquad \qquad \Psi_{22} = \sum_{k=1}^{n} \omega_{k1}$$
$$\omega_{i} = \begin{cases} 0, i \in F \\ m_{i} \times \Pi_{L \max} - a_{i} - \delta_{i} - \lambda, i \in E \end{cases}$$

The schedule is optimal in terms of cycle timeIt is an analytical algorithm

Modeling DACT with Activity Time Variation

- p_i: wafer processing at step i
 - x₀: unload wafer from LL and move to step 1
- x_i : move from step i to i+1
- x_n: return wafer from step n to LL
- q_{i1}: scheduled robot wait
 q_{i2}: unscheduled robot wait
- Swap: s_{i1} and s_{i2}
- Robot wait during swap: q_{i3}
- c: control place
- Scheduling: determining robot wait time in q_{ij}

Time Modeling

[A, B] means that, at normal condition, a task takes time A and can vary up to B.

Symbol	Transition or place	Actions	Allowed time duration
μ_0	x ₀	Robot unloads a wafer from a loadlock and moves to p ₁	$[Q_0, S_0]$
μ	x _i	Robot moves from p_i to p_{i+1} , $i \in N_{n-1}$	[Q, S]
μ _n	x _n	Robot moves to a loadlock and returns a wafer	$[Q_n, S_n]$
τ_{i}	p _i	A wafer being processed and waiting in $p_i, i \in N_n$	$([A_i,B_i],\delta_i]$
λ_{i}	s_{i1} and s_{i2}	Simple swap operation at p_i , $i \in N_n$	[C, D]
ω	q _{i3}	Robot waits during swap at p_i , $i \in N_n$	[0, Γ]
ω _{i1}	q_{i1}	Scheduled robot waits at $p_i, i \in N_n$	$[0,\infty]$
α_{i2}	q _{i2}	Unscheduled robot waits at $p_i, i \in N_n$	$[0,\infty]$
ω _{i4}	q_{i4}	The end of swap operation at p_i , $i \in N_n$	0

Operation Architecture

Two levels

New Jersey's Science & Technology University

- > Upper level: off-line schedule
- Lower level: real-time control
- Find the off-line schedule under normal condition by determining ω_{i1} and ω_i

Real-Time Controller

Under normal condition

$$\mu_{0}^{j} = Q_{0}$$
: j stands for an activity's jth occurrence
$$\mu_{i}^{j} = Q$$
$$\lambda_{i}^{j} = C$$
$$\omega_{i1} \text{ and } \omega_{i} \text{ are scheduled to be constants}$$

Real-Time Controller

In real-time, let

$$\mu_0^j = Q_0 + \sigma_0^j$$
$$\mu_i^j = Q + \sigma_i^j$$
$$\mu_n^j = Q_n + \sigma_n^j$$
$$\lambda_i^j = C + \rho_i^j$$

Regulate ω_{i1} in real-time as

$$\omega_{11}^{j} = Max\{0, \omega_{11} - (\sigma_{0}^{j} + \sigma_{n}^{j})\}$$

$$\omega_{i1}^{j} = Max\{0, \omega_{i1} - \sigma_{i}^{j}\}$$

New Jersey's Science & Technology University

N

Control Policy

- 1. Under the normal condition, find an off-line periodic schedule by determining ω_{i1} and ω_i , $i \in N_n$.
- 2. Transition y₁ is enabled if the jth token stays in q₁₁ for $\omega_{11}^{j} = Max\{0, \omega_{11} - (\sigma_{0}^{j} + \sigma_{n}^{j})\}$
- 3. Transitions y_i , $i \in N_n$ -{1} are enabled if the jth token stays in q_{i1} for $\omega_{i1}^j = Max\{0, \omega_{i1} \sigma_i^j\}$
- 4. A token should stay in q_{i3} for , $i \in N_n$, time units; and
- 5. Transitions s_{i1} and x_i fire once being enabled

Illustrative Example

Parameters

- Flow pattern: (1, 1)
- \succ μ₀ ∈ [23, 40]
- \succ µ₁ ∈ [2, 3]
- \succ μ₁ ∈ [14, 16]
- $\succ \lambda \in [21, 23]$
- $> A_1 = A_2 = 120$
- $> B_1 = B_2 = 125$
- $\succ \delta_1 = \delta_2 = 20$

■ It is shown that it is not always schedulable

By our approach, it is always schedulable

New Jersey's Science & Technology University

Ν

Conclusions

Contribution

- Compact and reusable PN model
- A novel operation architecture
- Schedulability analysis for deterministic activity time
- Closed-form optimal scheduling algorithms
- An effective real-time control policy
- Future work
 - real-time schedulability
 - > scheduling algorithm with activity time variations
 - Revisiting wafer pattern flow
 - Multiple cluster tools

New Jersey's Science & Technology University

Questions?

New Jersey's Science & Technology University